Asymptotic behavior of HIV-1 epidemic model with infinite distributed intracellular delays
نویسندگان
چکیده
In this study, asymptotic analysis of an HIV-1 epidemic model with distributed intracellular delays is proposed. One delay term represents the latent period which is the time when the target cells are contacted by the virus particles and the time the contacted cells become actively infected and the second delay term represents the virus production period which is the time when the new virions are created within the cell and are released from the cell. The infection free equilibrium and the chronic-infection equilibrium have been shown to be locally asymptotically stable by using Rouths Hurwiths criterion and general theory of delay differential equations. Similarly, by using Lyapunov functionals and LaSalle's invariance principle, it is proved that if the basic reproduction ratio is less than unity, then the infection-free equilibrium is globally asymptotically stable, and if the basic reproduction ratio is greater than unity, the chronic-infection equilibrium is globally asymptotically stable. Finally, numerical results with conclusion are discussed.
منابع مشابه
Sub-optimal Estimation of HIV Time-delay Model using State-Dependent Impulsive Observer with Time-varying Impulse Interval: Application to Continuous-time and Impulsive Inputs
Human Immunodeficiency Virus (HIV) weakens the immune system in confronting various diseases by attacking to CD4+T cells. In modeling HIV behavior, the number of CD4+T cells is considered as the output. But, continuous-time measurement of these cells is not possible in practice, and the measurement is only available at variable intervals that are several times bigger than sampling time. In this...
متن کاملGlobal Stability of an HIV-1 Infection Model with General Incidence Rate and Distributed Delays
In this work an HIV-1 infection model with nonlinear incidence rate and distributed intracellular delays and with humoral immunity is investigated. The disease transmission function is assumed to be governed by general incidence rate f(T, V)V. The intracellular delays describe the time between viral entry into a target cell and the production of new virus particles and the time between infectio...
متن کاملGlobal Dynamics of an HIV Infection Model with Two Classes of Target Cells and Distributed Delays
We investigate the global dynamics of an HIV infection model with two classes of target cells and multiple distributed intracellular delays. The model is a 5-dimensional nonlinear delay ODEs that describes the interaction of the HIV with two classes of target cells, CD4 T cells and macrophages. The incidence rate of infection is given by saturation functional response. The model has two types o...
متن کاملGlobal Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays
In this paper, a bidirectional ring network with three cells and different time delays is presented. To propose this model which is a good extension of three-unit neural networks, coupled cell network theory and neural network theory are applied. In this model, every cell has self-connections without delay but different time delays are assumed in other connections. A suitable Lyapun...
متن کاملGlobal stability of an HIV-1 model with distributed intracellular delays and a combination therapy.
Global stability is analyzed for a general mathematical model of HIV-1 pathogenesis proposed by Nelson and Perelson [11]. The general model include two distributed intracellular delays and a combination therapy with a reverse transcriptase inhibitor and a protease inhibitor. It is shown that the model exhibits a threshold dynamics: if the basic reproduction number is less than or equal to one, ...
متن کامل